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1. Answer (E): The legs of �ABE have lengths AB = 10 and BE. Therefore
1
2 · 10 · BE = 40, so BE = 8 .

2. Answer (C): The softball team could only have scored twice as many runs as
their opponent when they scored an even number of runs. In those games their
opponents scored

2
2

+
4
2

+
6
2

+
8
2

+
10
2

= 15 runs.

In the games the softball team lost, their opponents scored

(1 + 1) + (3 + 1) + (5 + 1) + (7 + 1) + (9 + 1) = 30 runs.

The total number of runs scored by their opponents was 15 + 30 = 45 runs.

3. Answer (E): Because six tenths of the flowers are pink and two thirds of
the pink flowers are carnations, 6

10 · 2
3 = 2

5 of the flowers are pink carnations.
Because four tenths of the flowers are red and three fourths of the red flowers
are carnations, 4

10 ·
3
4 = 3

10 of the flowers are red carnations. Therefore 2
5 + 3

10 =
7
10 = 70% of the flowers are carnations.

4. Answer (C): Factoring 22012 from each of the terms and simplifying gives

22012(22 + 1)
22012(22 − 1)

=
4 + 1
4 − 1

=
5
3

.

5. Answer (B): The total shared expenses were 105+125+175 = 405 dollars, so
each traveler’s fair share was 1

3 ·405 = 135 dollars. Therefore t = 135−105 = 30
and d = 135 − 125 = 10, so t − d = 30 − 10 = 20.

OR

Because Dorothy paid 20 dollars more than Tom, Sammy must receive 20 more
dollars from Tom than from Dorothy.

6. Answer (B): If Shenille attempted x three-point shots and 30 − x two-point
shots, then she scored a total of 20

100 · 3 · x + 30
100 · 2 · (30 − x) = 18 points.

Remark: The given information does not allow the value of x to be determined.
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7. Answer (C):

Note that 110 = S9 = S7 + S8 = 42 + S8, so S8 = 110 − 42 = 68. Thus
68 = S8 = S6+S7 = S6+42, so S6 = 68−42 = 26. Similarly, S5 = 42−26 = 16,
and S4 = 26 − 16 = 10.

8. Answer (D):

Multiplying the given equation by xy �= 0 yields x2y + 2y = xy2 + 2x. Thus

x2y − 2x − xy2 + 2y = x(xy − 2) − y(xy − 2) = (x − y)(xy − 2) = 0.

Because x − y �= 0, it follows that xy = 2.

9. Answer (C): Because EF is parallel to AB, it follows that �FEC is similar
to �ABC and FE = FC. Thus half of the perimeter of ADEF is AF + FE =
AF + FC = AC = 28. The entire perimeter is 56.

10. Answer (D): If n satisfies the equation 1
n = 0.ab, then 100

n = ab.ab and
subtracting gives 99

n = ab. The positive factors of 99 are 1, 3, 9, 11, 33, and
99. Only n = 11, 33, and 99 give a number 99

n consisting of two different digits,
namely 09, 03, and 01, respectively. Thus the requested sum is 11+33+99 = 143.

11. Answer (C):

Let x = DE and y = FG. Then the perimeter of ADE is x + x + x = 3x, the
perimeter of DFGE is x + (y − x) + y + (y − x) = 3y − x, and the perimeter of
FBCG is y + (1− y) + 1 + (1− y) = 3− y. Because the perimeters are equal, it
follows that 3x = 3y − x = 3− y. Solving this system yields x = 9

13 and y = 12
13 .

Thus DE + FG = x + y = 21
13 .

12. Answer (A): Let the angles of the triangle be α − δ, α, and α + δ. Then
3α = α− δ + α + α + δ = 180◦, so α = 60◦. There are three cases depending on
which side is opposite to the 60◦ angle. Suppose that the triangle is ABC with
∠BAC = 60◦. Let D be the foot of the altitude from C. The triangle CAD is
a 30-60-90◦ triangle, so AD = 1

2AC and CD =
√

3
2 AC. There are three cases

to consider. In each case the Pythagorean Theorem can be used to solve for the
unknown side.

If AB = 5, AC = 4, and BC = x, then AD = 2, CD = 2
√

3, and BD =
|AB − AD| = 3. It follows that x2 = BC2 = CD2 + BD2 = 21, so x =

√
21.
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If AB = x, AC = 4, and BC = 5, then AD = 2, CD = 2
√

3, and BD =
|AB −AD| = |x− 2|. It follows that 25 = BC2 = CD2 + BD2 = 12 + (x− 2)2,
and the positive solution is x = 2 +

√
13.

If AB = x, AC = 5, and BC = 4, then AD = 5
2 , CD = 5

√
3

2 , and BD =
|AB −AD| = |x− 5

2 |. It follows that 16 = BC2 = CD2 + BD2 = 75
4 + (x− 5

2 )2,
which has no solution because 75

4 > 16.

The sum of all possible side lengths is 2 +
√

13 +
√

21. The requested sum is
2 + 13 + 21 = 36.

OR

As in the first solution, there are three cases depending on which side is opposite
to the 60◦ angle. In each case, the Law of Cosines can be used to solve for the
unknown side. If the unknown side is opposite to the 60◦ angle, then

x2 = 42 + 52 − 2 · 4 · 5 · cos(60◦) = 21,

so x =
√

21.

If the side of length 5 is opposite to the 60◦ angle, then

52 = x2 + 42 − 2 · 4 · x · cos(60◦) = x2 − 4x + 16,

and the positive solution is 2 +
√

13.

If the side of length 4 is opposite to the 60◦ angle, then

42 = x2 + 52 − 2 · x · 5 · cos(60◦) = x2 − 5x + 25,

which has no real solutions.

The sum of all possible side lengths is 2 +
√

13 +
√

21. The requested sum is
2 + 13 + 21 = 36.

13. Answer (B): Let line AG be the required line, with G on CD. Divide ABCD
into triangle ABF , trapezoid BCEF , and triangle CDE, as shown. Their areas
are 1, 5, and 3

2 , respectively. Hence the area of ABCD = 15
2 , and the area of

triangle ADG = 15
4 . Because AD = 4, it follows that GH = 15

8 = r
s . The

equation of CD is y = −3(x − 4), so when y = 15
8 , x = p

q = 27
8 . Therefore

p + q + r + s = 58.
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A

B

F

C

G

E H D

y

x

14. Answer (B):

Because the terms form an arithmetic sequence,

log12 y =
1
2

(log12 162 + log12 1250) =
1
2

log12(162 · 1250)

=
1
2

log12(2
23454) = log12(2 · 3252).

Then

log12 x =
1
2

(log12 162 + log12 y) =
1
2

(
log12(2 · 34) + log12(2 · 3252)

)

=
1
2

log12(2
23652) = log12(2 · 335) = log12 270.

Therefore x = 270.

OR

If (Bk) = (log12 Ak) is an arithmetic sequence with common difference d, then
(Ak) is a geometric sequence with common ratio r = 12d. Therefore 162, x, y, z, 1250
is a geometric sequence. Let r be their common ratio. Then 1250 = 162r4 and
r = 5

3 . Thus x = 162r = 162 · 5
3 = 270.

15. Answer (D): There are two cases. If Peter and Pauline are given to the
same pet store, then there are 4 ways to choose that store. Each of the children
must then be assigned to one of the other three stores, and this can be done
in 33 = 27 ways. Therefore there are 4 · 27 = 108 possible assignments in this
case. If Peter and Pauline are given to different stores, then there are 4 · 3 = 12
ways to choose those stores. In this case, each of the children must be assigned
to one of the other two stores, and this can be done in 23 = 8 ways. Therefore
there are 12 · 8 = 96 possible assignments in this case. The total number of
assignments is 108 + 96 = 204.
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16. Answer (E): Let a, b, and c be the number of rocks in piles A, B, and C,
respectively. Then

40a + 50b

a + b
= 43 and 7b = 3a.

Because 7 and 3 are relatively prime, there is a positive integer k such that
a = 7k and b = 3k. Let µC equal the mean weight in pounds of the rocks in C
and µBC equal the mean weight in pounds of the rocks in B and C. Then

40 · 7k + µC · c
7k + c

= 44, so µC =
28k + 44c

c
,

and

µBC =
50 · 3k + (28k + 44c)

3k + c
=

178k + 44c

3k + c
.

Clearing the denominator and rearranging yields (µBC −44)c = (178−3µBC)k.
Because the mean weight of the rocks in the combined piles A and C is 44
pounds, and the mean weight of the rocks in B is greater than the mean weight
of the rocks in A, it follows that the mean weight of the rocks in B and C must
be greater than 44 pounds. Thus (µBC − 44)c > 0 and therefore 178 − 3µBC

must be greater than zero. This implies that µBC < 178
3 = 59 1

3 . If k = 15c
and µC = 464, then µBC = 59. Thus the greatest possible integer value for the
weight in pounds of the combined piles B and C is 59.

17. Answer (D): For 1 ≤ k ≤ 11, the number of coins remaining in the chest
before the kth pirate takes a share is 12

12−k times the number remaining afterward.
Thus if there are n coins left for the 12th pirate to take, the number of coins
originally in the chest is

1211 · n
11!

=
222 · 311 · n

28 · 34 · 52 · 7 · 11
=

214 · 37 · n
52 · 7 · 11

.

The smallest value of n for which this is a positive integer is 52 · 7 · 11 = 1925.

In this case there are
214 · 37 · 11!

(12 − k)! · 12k−1

coins left for the kth pirate to take, and note that this amount is an integer for
each k. Hence the 12th pirate receives 1925 coins.

18. Answer (B): Let the vertices of the regular hexagon be labeled in order A,
B, C, D, E, and F . Let O be the center of the hexagon, which is also the
center of the largest sphere. Let the eighth sphere have center G and radius r.
Because the centers of the six small spheres are each a distance 2 from O and
the small spheres have radius 1, the radius of the largest sphere is 3. Because G



2013 AMC12A Solutions 7

is equidistant from A and D, the segments GO and AO are perpendicular. Let
x be the distance from G to O. Then x + r = 3. The Pythagorean Theorem
applied to �AOG gives (r + 1)2 = 22 + x2 = 4 + (3 − r)2, which simplifies to
2r + 1 = 13 − 6r, so r = 3

2 . Note that this shows that the eighth sphere is
tangent to AD at O.

O

E

D

C

B

A

F

1

2

A DO

G
r

x

19. Answer (D): By the Power of a Point Theorem, BC ·CX = AC2 − r2 where
r = AB is the radius of the circle. Thus BC · CX = 972 − 862 = 2013. Since
BC = BX + CX and CX are both integers, they are complementary factors of
2013. Note that 2013 = 3 · 11 · 61, and CX < BC < AB + AC = 183. Thus the
only possibility is CX = 33 and BC = 61.

A

B

X

C97

86

20. Answer (B): Consider the elements of S as integers modulo 19. Assume a � b.
If a > b, then a − b ≤ 9. If a < b, then b − a > 9; that is b − a ≥ 10 and so
(a + 19) − b ≤ 9. Thus a � b if and only if 0 < (a − b) (mod 19) ≤ 9.

Suppose that (x, y, z) is a triple in S ×S ×S such that x � y, y � z, and z � x.
There are 19 possibilities for the first entry x. Once x is chosen, y can equal
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x + i for any i, 1 ≤ i ≤ 9. Then z is at most x + 9 + i and at least x + 10, so
once y is chosen, there are i possibilities for the third element z.

The number of required triples is equal to 19(1 + 2 + · · · + 9) = 19 · 1
2 · 9 · 10 =

19 · 45 = 855.

21. Answer (A):

Let An = log (n + log ((n − 1) + log (· · · + log (3 + log 2) · · · ))) . Note that 0 <
log 2 = A2 < 1. If 0 < Ak−1 < 1, then k < k + Ak−1 < k + 1. Hence
0 < log k < log(k + Ak−1) = Ak < log(k + 1) ≤ 1, as long as log k > 0 and
log (k + 1) ≤ 1, which occurs when 2 ≤ k ≤ 9. Thus 0 < An < 1 for 2 ≤ n ≤ 9.

Because 0 < A9 < 1, it follows that 10 < 10 + A9 < 11, and so 1 = log(10) <
log(10 + A9) = A10 < log(11) < 2. If 1 < Ak−1 < 2, then k + 1 < k + Ak−1 <
k + 2. Hence 1 < log(k + 1) < log(k + Ak−1) = Ak < log(k + 2) ≤ 2, as long
as log (k + 1) > 1 and log (k + 2) ≤ 2, which occurs when 10 ≤ k ≤ 98. Thus
1 < An < 2 for 10 ≤ n ≤ 98.

In a similar way, it can be proved that 2 < An < 3 for 99 ≤ n ≤ 997, and
3 < An < 4 for 998 ≤ n ≤ 9996.

For n = 2012, it follows that 3 < A2012 < 4, so 2016 < 2013+A2012 < 2017 and
log 2016 < A2013 < log 2017.

22. Answer (E): Let n be a 6-digit palindrome, m = n
11 , and suppose m is a

palindrome as well. First, if m is a 4-digit number, then n = 11m < 11 · 105 =
106 + 105. Thus the first and last digit of n is 1. Thus the last digit of m is 1
and then the first digit of m must be 1 as well. Then m ≤ 1991 < 2000 and
n = 11m < 11 ·2000 = 22 000, which is a contradiction. Therefore m is a 5-digit
number abcba. If a + b ≤ 9 and b + c ≤ 9, then there are no carries in the sum
n = 11m = abcba0+ abcba; thus the digits of n in order are a, a+ b, b+ c, b+ c,
a + b, and a. Conversely, if a + b ≥ 10, then the first digit of n is a + 1 and
the last digit a; and if a + b ≤ 9 but b + c ≥ 10, then the second digit of n is
a + b + 1 if a + b < 9, or 0 if a + b = 9, and the previous to last digit is a + b. In
any case n is not a palindrome. Therefore n = 11m is a palindrome if and only
if a + b ≤ 9 and b + c ≤ 9.

Thus the number of pairs (m,n) is equal to

9∑

b=0

9−b∑

c=0

9−b∑

a=1

1 =
9∑

b=0

(10 − b)(9 − b).

Letting j = 10 − b gives

10∑

j=1

j(j − 1) =
10 · 11 · 21

6
− 10 · 11

2
= 330.
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The total number of 6-digit palindromes abccba is determined by 10 choices for
each of b and c, and 9 choices for a, for a total of 9 ·102 = 900. Thus the required
probability is 330

900 = 11
30 .

23. Answer (C):

Assume that the vertices of ABCD are labeled in counterclockwise order. Let
A′, B′, C ′, and D′ be the images of A, B, C, and D, respectively, under the
rotation. Because �A′PA and �C ′PC are isosceles right triangles, points A′

and C ′ are on lines AB and CD, respectively. Moreover, because AP =
√

2 and
PC = AC − AP =

√
2(
√

3 + 1) −
√

2 =
√

6, it follows that AA′ =
√

2AP = 2
and CC ′ =

√
2CP = 2

√
3. By symmetry, points B′ and D′ are on lines CD

and AB, respectively. Let X �= B and Y �= D′ be the intersections of BC and
C ′D′, respectively, with the circle centered at P with radius PB. Note that
PD′ = PD = PB, so this circle also contains D′. Therefore the required region
consists of sectors APA′, BPX, CPC ′, and Y PD′, and triangles BPA′, CPX,
Y PC ′, and APD′.

Sector APA′ has area 1
4 ·(

√
2)2π = π

2 , and sector CPC ′ has area 1
4 ·(

√
6)2π = 3π

2 .
Let H and I be the midpoints of AA′ and BX, respectively. Then PH = AH =√

2
2 AP = 1, and PI = HB = AB − AH =

√
3. Thus �BPH is a 30-60-90◦

triangle, implying that PB = 2 and �XPB is equilateral. Therefore congruent
sectors BPX and Y PD′ each have area 1

6 · 22π = 2π
3 .

Congruent triangles BPA′ and D′PA each have altitude PH = 1 and base
A′B = AB − AH − HA′ =

√
3 − 1, so each has area 1

2 (
√

3 − 1). Congruent
triangles CPX and C ′PY each have altitude PI =

√
3 and base XC = BC −

BX =
√

3 − 1, so each has area 1
2 (3 −

√
3).

The area of the entire region is

π

2
+

3π

2
+ 2 · 2π

3
+ 2

(√
3 − 1
2

)
+ 2

(
3 −

√
3

2

)
=

10π + 6
3

,

and a + b + c = 10 + 6 + 3 = 19.
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24. Answer (E): Assume without loss of generality that the regular 12-gon is
inscribed in a circle of radius 1. Every segment with endpoints in the 12-gon
subtends an angle of 360

12 k = 30k degrees for some 1 ≤ k ≤ 6. Let dk be the
length of those segments that subtend an angle of 30k degrees. There are 12 such
segments of length dk for every 1 ≤ k ≤ 5 and 6 segments of length d6. Because
dk = 2 sin(15k◦), it follows that d2 = 2 sin(30◦) = 1, d3 = 2 sin(45◦) =

√
2,

d4 = 2 sin(60◦) =
√

3, d6 = 2 sin(90◦) = 2,

d1 = 2 sin(15◦) = 2 sin(45◦ − 30◦)

= 2 sin(45◦) cos(30◦) − 2 sin(30◦) cos(45◦) =
√

6 −
√

2
2

, and

d5 = 2 sin(75◦) = 2 sin(45◦ + 30◦)

= 2 sin(45◦) cos(30◦) + 2 sin(30◦) cos(45◦) =
√

6 +
√

2
2

.

If a ≤ b ≤ c, then da ≤ db ≤ dc and the segments with lengths da, db, and
dc do not form a triangle with positive area if and only if dc ≥ da + db. Be-
cause d2 = 1 <

√
6 −

√
2 = 2d1 <

√
2 = d3, it follows that for (a, b, c) ∈

{(1, 1, 3), (1, 1, 4), (1, 1, 5), (1, 1, 6)}, the segments of lengths da, db, dc do not
form a triangle with positive area. Similarly,

d3 =
√

2 <

√
6 −

√
2

2
+ 1 = d1 + d2 <

√
3 = d4,

d4 < d5 =
√

6 +
√

2
2

=
√

6 −
√

2
2

+
√

2 = d1 + d3, and

d5 < d6 = 2 = 1 + 1 = 2d2,

so for (a, b, c) ∈ {(1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 5), (1, 3, 6), (2, 2, 6)}, the seg-
ments of lengths da, db, dc do not form a triangle with positive area. Fi-
nally, if a ≥ 2 and b ≥ 3, then da + db ≥ d2 + d3 = 1 +

√
2 > 2 ≥ dc, and

also if a ≥ 3, then da + db ≥ 2d3 = 2
√

2 > 2 = dc. Therefore the com-
plete list of forbidden triples (da, db, dc) is given by (a, b, c) ∈ {(1, 1, 3), (1, 1, 4),
(1, 1, 5), (1, 1, 6), (1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 5), (1, 3, 6), (2, 2, 6)}.
For each (a, b, c) ∈ {(1, 1, 3), (1, 1, 4), (1, 1, 5)}, there are

(
12
2

)
pairs of segments of

length da and 12 segments of length dc. For each (a, b, c) ∈ {(1, 1, 6), (2, 2, 6}},
there are

(
12
2

)
pairs of segments of length da and 6 segments of length dc. For

each (a, b, c) ∈ {(1, 2, 4), (1, 2, 5), (1, 3, 5)}, there are 123 triples of segments with
lengths da, db, and dc. Finally, for each (a, b, c) ∈ {(1, 2, 6), (1, 3, 6)}, there
are 122 pairs of segments with lengths da and db, and 6 segments of length
dc. Because the total number of triples of segments equals

((12
2 )
3

)
=

(
66
3

)
, the

required probability equals

1 −
3 · 12 ·

(
12
2

)
+ 2 · 6 ·

(
12
2

)
+ 3 · 123 + 2 · 122 · 6

(
66
3

)

= 1 − 63
286

=
223
286

.
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25. Answer (A): Let H = {z ∈ C : Im(z) > 0}. If z1, z2 ∈ H and f(z1) = f(z2),
then z2

1 − z2
2 + i(z1 − z2) = (z1 − z2)(z1 + z2 + i) = 0. Because Im(z1) > 0 and

Im(z2) > 0, it follows that z1 + z2 + i �= 0. Thus z1 = z2; that is, the function f
is one-to-one on H. Let r be a positive real number. Note that f(r) = r2+1+ir
describes the top part of the parabola x = y2 +1. Similarly, f(−r) = r2 +1− ir
describes the bottom part of the parabola x = y2 + 1. Because f(i) = −1, it
follows that the image set f(H) equals {w ∈ C : Re(w) < (Im(w))2 + 1}. Thus
the set of complex numbers w ∈ f(H) with integer real and imaginary parts of
absolute value at most 10 is equal to

S = {w = a + ib ∈ C : a, b ∈ Z, |a| ≤ 10, |b| ≤ 10, and a < b2 + 1}.

Because f is one-to-one, the required answer is |f−1(S)| = |S| and

|S| = 212 −
3∑

b=−3

10∑

a=b2+1

1 = 441 −
3∑

b=−3

(10 − b2)

= 441 − (1 + 6 + 9 + 10 + 9 + 6 + 1) = 399.

The problems and solutions in this contest were proposed by Bernardo Abrego, Betsy
Bennett, Tom Butts, Steve Davis, Doug Faires, Michelle Ghrist, Jerry Grossman,
Elign Johnston, Dan Kennedy, Joe Kennedy, Cap Khoury, Patrick Vennebush, Kevin
Wang, Dave Wells, and LeRoy Wenstrom.
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25. Answer (A): Let H = {z ∈ C : Im(z) > 0}. If z1, z2 ∈ H and f(z1) = f(z2),
then z2

1 − z2
2 + i(z1 − z2) = (z1 − z2)(z1 + z2 + i) = 0. Because Im(z1) > 0 and

Im(z2) > 0, it follows that z1 + z2 + i �= 0. Thus z1 = z2; that is, the function f
is one-to-one on H. Let r be a positive real number. Note that f(r) = r2+1+ir
describes the top part of the parabola x = y2 +1. Similarly, f(−r) = r2 +1− ir
describes the bottom part of the parabola x = y2 + 1. Because f(i) = −1, it
follows that the image set f(H) equals {w ∈ C : Re(w) < (Im(w))2 + 1}. Thus
the set of complex numbers w ∈ f(H) with integer real and imaginary parts of
absolute value at most 10 is equal to

S = {w = a + ib ∈ C : a, b ∈ Z, |a| ≤ 10, |b| ≤ 10, and a < b2 + 1}.

Because f is one-to-one, the required answer is |f−1(S)| = |S| and

|S| = 212 −
3∑

b=−3

10∑

a=b2+1

1 = 441 −
3∑

b=−3

(10 − b2)

= 441 − (1 + 6 + 9 + 10 + 9 + 6 + 1) = 399.

The problems and solutions in this contest were proposed by Bernardo Abrego, Betsy
Bennett, Tom Butts, Steve Davis, Doug Faires, Michelle Ghrist, Jerry Grossman,
Elign Johnston, Dan Kennedy, Joe Kennedy, Cap Khoury, Patrick Vennebush, Kevin
Wang, Dave Wells, and LeRoy Wenstrom.
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