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1. Answer (E): The distance from −2 to −6 is |(−6) − (−2)| = 4 units. The
distance from −6 to 5 is |5 − (−6)| = 11 units. Altogether the bug crawls
4 + 11 = 15 units.

2. Answer (D): Because 20 seconds is 1
3 of a minute, Cagney can frost 5÷ 1

3 = 15
cupcakes in five minutes. Because 30 seconds is 1

2 of a minute, Lacey can frost
5 ÷ 1

2 = 10 cupcakes in five minutes. Altogether they can frost 15 + 10 = 25
cupcakes in five minutes.

3. Answer (D): The volume of the second box is 2 · 3 = 6 times the volume of
the first box. Hence it can hold 6 · 40 = 240 grams of clay.

4. Answer (C): The ratio of blue marbles to red marbles is 3 : 2. If the number
of red marbles is doubled, the ratio will be 3 : 4, and the fraction of marbles
that are red will be 4

3+4 = 4
7 .

5. Answer (D):

For each blueberry in the fruit salad there are 2 raspberries, 8 cherries, and 24
grapes. Thus there are 1 + 2 + 8 + 24 = 35 pieces of fruit for each blueberry.
Because 280 = 35 · 8, it follows that there are a total of 8 blueberries, 8 · 2 = 16
raspberries, 8 · 8 = 64 cherries, and 8 · 24 = 192 grapes in the fruit salad. Thus
there are 64 cherries.

6. Answer (D): Let the three whole numbers be a < b < c. The set of sums of
pairs of these numbers is (a + b, a + c, b + c) = (12, 17, 19). Thus 2(a + b + c) =
(a+ b)+ (a+ c)+ (b+ c) = 12+17+19 = 48, and a+ b+ c = 24. If follows that
(a, b, c) = (24 − 19, 24 − 17, 24 − 12) = (5, 7, 12). Therefore the middle number
is 7.

7. Answer (C): Let a be the initial term and d the common difference for the
arithmetic sequence. Then the sum of the degree measures of the central angles
is

a + (a + d) + · · · + (a + 11d) = 12a + 66d = 360,

so 2a + 11d = 60. Letting d = 4 yields the smallest possible positive integer
value for a, namely a = 8.
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8. Answer (C): If the numbers are arranged in the order a, b, c, d, e, then the
iterative average is

a+b
2 +c

2 +d

2 + e

2
=

a + b + 2c + 4d + 8e

16
.

The largest value is obtained by letting (a, b, c, d, e) = (1, 2, 3, 4, 5) or (2, 1, 3, 4, 5),
and the smallest value is obtained by letting (a, b, c, d, e) = (5, 4, 3, 2, 1) or
(4, 5, 3, 2, 1). In the former case the iterative average is 65/16, and in the latter
case the iterative average is 31/16, so the desired difference is

65
16

− 31
16

=
34
16

=
17
8

.

9. Answer (A): There were 200 ·365 = 73000 non-leap days in the 200-year time
period from February 7, 1812 to February 7, 2012. One fourth of those years
contained a leap day, except for 1900, so there were 1

4 · 200 − 1 = 49 leap days
during that time. Therefore Dickens was born 73049 days before a Tuesday.
Because the same day of the week occurs every 7 days and 73049 = 7 ·10435+4,
the day of Dickens’ birth (February 7, 1812) was 4 days before a Tuesday, which
was a Friday.

10. Answer (D):

The area of a triangle equals one half the product of two sides and the sine of
the included angle. Because the median divides the base in half, it partitions
the triangle in two triangles with equal areas. Thus 1

2 · 5 · 9 sin θ = 15, and
sin θ = 2·15

5·9 = 2
3 .

OR

The altitude h to the base forms a right triangle with the median as its hy-
potenuse, and thus h = 9 sin θ. Hence the area of the original triangle is
1
2 · 10h = 1

2 · 10 · 9 sin θ = 30, so sin θ = 2·30
10·9 = 2

3 .



2012 AMC12A Solutions 4

11. Answer (B):

If Alex wins 3 rounds, Mel wins 2 rounds, and Chelsea wins 1 round, then
the game’s outcomes will be a permutation of AAAMMC, where the ith letter
represents the initial of the winner of the ith round. There are

6!
3!2!1!

= 60

such permutations.

Because each round has only one winner, it follows that P (M) + P (C) = 1 −
P (A) = 1

2 . Also P (M) = 2P (C) and so P (M) = 1
3 and P (C) = 1

6 .

The probability that Alex wins 3 rounds, Mel wins 2 rounds, and Chelsea wins
1 round is therefore

6!
3!2!1!

(
1
2

)3 (
1
3

)2 (
1
6

)
=

60
23 · 32 · 6 =

5
36

.

12. Answer (D):

Suppose by symmetry that A = (a, b) with a > 0. Because ABCD is tangent
to the circle with equation x2 + y2 = 1 at (0, 1) and both A and B are on the
concentric circle with equation x2 + y2 = 4, it follows that B = (−a, b). Then
the horizontal length of the square is 2a and its vertical height is b−1. Therefore
2a = b − 1, or b = 2a + 1. Substituting this into the equation a2 + b2 = 4 leads
to the equation 5a2 + 4a− 3 = 0. By the quadratic formula, the positive root is
1
5 (
√

19 − 2), and so the side length 2a is 1
5 (2

√
19 − 4).

13. Answer (D): Let the length of the lunch break be m minutes. Then the
three painters each worked 480−m minutes on Monday, the two helpers worked
372−m minutes on Tuesday, and Paula worked 672−m minutes on Wednesday.
If Paula paints p% of the house per minute and her helpers paint a total of h%
of the house per minute, then

(p + h)(480 − m) = 50,

h(372 − m) = 24, and
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p(672 − m) = 26.

Adding the last two equations gives 672p+372h−mp−mh = 50, and subtracting
this equation from the first one gives 108h− 192p = 0, so h = 16p

9 . Substitution
into the first equation then leads to the system

25p

9
(480 − m) = 50,

p(672 − m) = 26.

The solution of this system is p = 1
24 and m = 48. Note that h = 2

27 .

14. Answer (E): The labeled circular sectors in the figure each have the same
area because they are all 2π

3 -sectors of a circle of radius 1. Therefore the area
enclosed by the curve is equal to the area of a circle of radius 1 plus the area
of a regular hexagon of side 2. Because the regular hexagon can be partitioned
into 6 congruent equilateral triangles of side 2, it follows that the required area
is

π + 6

(√
3

4
· 22

)
= π + 6

√
3 .

15. Answer (A): There are 24 = 16 possible initial colorings for the four corner
squares. If their initial coloring is BBBB, one of the four cyclic permutations of
BBBW , or one of the two cyclic permutations of BWBW , then all four corner
squares are black at the end. If the initial coloring is WWWW , one of the
four cyclic permutations of BWWW , or one of the four cyclic permutations of
BBWW , then at least one corner square is white at the end. Hence all four
corner squares are black at the end with probability 7

16 . Similarly, all four edge
squares are black at the end with probability 7

16 . The center square is black
at the end if and only if it was initially black, so it is black at the end with
probability 1

2 . The probability that all nine squares are black at the end is
1
2 ·

(
7
16

)2 = 49
512 .
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16. Answer (E): Let r be the radius of C1. Because OX = OY = r, it follows
that ∠OZY = ∠XZO. Applying the Law of Cosines to triangles XZO and
OZY gives

112 + 132 − r2

2 · 11 · 13
= cos ∠XZO = cos ∠OZY =

72 + 112 − r2

2 · 7 · 11
.

Solving for r2 gives r2 = 30 and so r =
√

30.

OR

Let P be the point on XZ such that ZP = ZY = 7. Because OZ is the bisector
of ∠XZY , it follows that �OPZ ∼= �OY Z. Therefore OP = OY = r and thus
P is on C1. By the Power of a Point Theorem, 13 · 7 = ZX ·ZP = OZ2 − r2 =
112 − r2. Solving for r2 gives r2 = 30 and so r =

√
30.

O

X

Z

P

Y

C1

C2

r

r

7

11

13

17. Answer (B): For 1 ≤ j ≤ 5, let Sj = {5n + j : 0 ≤ n ≤ 5}. Because no
pair of elements in S can have a sum that is divisible by 5, at least one of the
sets S ∩ S1 and S ∩ S4 must be empty. Similarly, at least one of S ∩ S2 and
S ∩S3 must be empty, and S ∩S5 can contain at most one element. Thus S can
contain at most 30 − 6 − 6 − 5 = 13 elements. An example of a set that meets
the requirements is S = {1, 2, 6, 7, 11, 12, 16, 17, 21, 22, 26, 27, 30}.

OR

The set S from the previous solution shows that size 13 is possible. Consider
the following partition of {1, 2, . . . , 30}:

{5, 10, 15, 20, 25, 30}, {1, 4}, {2, 3}, {6, 9}, {7, 8}, {11, 14},
{12, 13}, {16, 19}, {17, 18}, {21, 24}, {22, 23}, {26, 29}, {27, 28}.

There are 13 sets in this partition, and the sum of any pair of elements in
the same part is a multiple of 5. Thus by the pigeon-hole principle any set S
with at least 14 elements has at least two elements whose sum is divisible by 5.
Therefore 13 is the largest possible size of S.
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18. Answer (A):

Let a = BC, b = AC, and c = AB. Let D, E, and F be the feet of the
perpendiculars from I to BC, AC, and AB, respectively. Because BF and
BD are common tangent segments to the incircle of �ABC, it follows that
BF = BD. Similarly, CD = CE and AE = AF . Thus

2 · BD = BD + BF = (BC − CD) + (AB − AF ) = BC + AB − (CE + AE)
= a + c − b = 25 + 27 − 26 = 26,

so BD = 13.

Let s = 1
2 (a + b + c) = 39 be the semiperimeter of �ABC and r = DI

the inradius of �ABC. The area of �ABC is equal to rs and also equal
to

√
s(s − a)(s − b)(s − c) by Heron’s formula. Thus

r2 =
(s − a)(s − b)(s − c)

s
=

14 · 13 · 12
39

= 56.

Finally, by the Pythagorean Theorem applied to the right triangle BDI, it
follows that

BI2 = DI2 + BD2 = r2 + BD2 = 56 + 132 = 56 + 169 = 225,

so BI = 15.

19. Answer (B): This situation can be modeled with a graph having these six
people as vertices, in which two vertices are joined by an edge if and only if the
corresponding people are internet friends. Let n be the number of friends each
person has; then 1 ≤ n ≤ 4. If n = 1, then the graph consists of three edges
sharing no endpoints. There are 5 choices for Adam’s friend and then 3 ways to
partition the remaining 4 people into 2 pairs of friends, for a total of 5 · 3 = 15
possibilities. The case n = 4 is complementary, with non-friendship playing the
role of friendship, so there are 15 possibilities in that case as well.

For n = 2, the graph must consist of cycles, and the only two choices are
two triangles (3-cycles) and a hexagon (6-cycle). In the former case, there
are

(
5
2

)
= 10 ways to choose two friends for Adam and that choice uniquely

determines the triangles. In the latter case, every permutation of the six vertices
determines a hexagon, but each hexagon is counted 6 ·2 = 12 times, because the
hexagon can start at any vertex and be traversed in either direction. This gives
6!
12 = 60 hexagons, for a total of 10 + 60 = 70 possibilities. The complementary
case n = 3 provides 70 more. The total is therefore 15 + 15 + 70 + 70 = 170.

20. Answer (B):

A factor in the product defining P (x) has degree 2012 if and only if the sum of
the exponents in x is equal to 2012. Because there is only one way to write 2012
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as a sum of distinct powers of 2, namely the one corresponding to its binary
expansion 2012 = 111110111002, it follows that the coefficient of x2012 is equal
to 20 · 21 · 25 = 26.

Note: In general, if 0 ≤ n ≤ 2047 and n =
∑

j∈A 2j for A ⊆ {0, 1, 2, . . . , 10},
then the coefficient of xn is equal to 2a where a =

(
11
2

)
−

∑
j∈A j.

21. Answer (E): Adding the two equations gives

2a2 + 2b2 + 2c2 − 2ab − 2bc − 2ac = 14,

so
(a − b)2 + (b − c)2 + (c − a)2 = 14.

Note that there is a unique way to express 14 as the sum of perfect squares
(up to permutations), namely, 14 = 32 + 22 + 12. Because a − b, b − c, and
c − a are integers with their sum equal to 0 and a ≥ b ≥ c, it follows that
a − c = 3 and either a − b = 2 and b − c = 1, or a − b = 1 and b − c =
2. Therefore either (a, b, c) = (c + 3, c + 1, c) or (a, b, c) = (c + 3, c + 2, c).
Substituting the relations in the first case into the first given equation yields
2011 = a2 − c2 + ab − b2 = (a − c)(a + c) + (a − b)b = 3(2c + 3) + 2(c + 1).
Solving gives (a, b, c) = (253, 251, 250). The second case does not yield an integer
solution. Therefore a = 253.

22. Answer (C): Label the vertices of Q as in the figure. Let mxy denote the
midpoint of vxvy. Call a segment long if it joins midpoints of opposite edges of
a face and short if it joins midpoints of adjacent edges.

Let p be one of the k planes. Assume p intersects the face v1v2v3v4. First suppose
p intersects v1v2v3v4 by a long segment. By symmetry assume p ∩ v1v2v3v4 =
m12m34. Because p intersects the interior of Q, it follows that p intersects the
face v3v4v8v7. By symmetry there are two cases: 1.1 p ∩ v3v4v8v7 = m34m78

and 1.2 p ∩ v3v4v8v7 = m34m48.

In Case 1.1 the plane p is the plane determined by the square m12m34m78m56.
Note that p contains 4 long segments and by symmetry there are 3 planes like
p, one for every pair of opposite faces of Q.

In Case 1.2 the plane p is determined by the rectangle m12m34m48m15. Note
that p contains 2 long segments and 2 short segments, and by symmetry there
are 12 planes like p, one for every edge of Q.

Second, suppose p intersects v1v2v3v4 by a short segment. By symmetry assume
p ∩ v1v2v3v4 = m23m34. Again p must intersect the face v3v4v8v7. There are
three cases: 2.1 p ∩ v3v4v8v7 = m34m37, 2.2 p ∩ v3v4v8v7 = m34m78, and 2.3
p ∩ v3v4v8v7 = m34m48.
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In Case 2.1 the plane p is the plane determined by the triangle m23m34m37.
Note that p contains 3 short segments and by symmetry there are 8 planes like
p, one for every vertex of Q.

Case 2.2 duplicates Case 1.2.

In Case 2.3 the plane p is determined by the hexagon m23m34m48m58m56m26.
Note that p contains 6 short segments, and by symmetry there are 4 planes like
p, one for every pair of opposite vertices of Q.

Therefore the maximum possible value of k is 3 + 12 + 8 + 4 = 27, obtained by
considering all possible planes classified so far.

To find the minimum, note that P ∩S consists of 24 short segments and 12 long
segments. Every plane p ∈ P can contain at most 6 short segments; moreover,
the union of the 4 planes obtained from Case 2.3 contains all 24 short segments.
Similarly, every plane p ∈ P can contain at most 4 long segments; moreover,
the union of the 3 planes obtained from Case 1.1 contains all 12 long segments.
Thus the minimum possible value of k is 4 + 3 = 7, and the required difference
is 27 − 7 = 20.

23. Answer (C): Consider the unit square U with vertices v1 = (0, 0), v2 =
(1, 0), v3 = (1, 1), and v4 = (0, 1), and the squares Si = T (vi) with i = 1, 2, 3, 4.
Note that T (v) contains vi if and only if v ∈ Si. First choose a point v = (x, y)
uniformly at random over all pairs of real numbers (x, y) such that 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1. In this case, the probability that T (v) contains vi and vj is the
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area of the intersection of the squares U , Si, and Sj . This intersection is empty
when vivj is a diagonal of U and it is equal to Area(U ∩ Si ∩ Sj) when vivj is a
side of U . By symmetry, the probability that T (v) contains two vertices of U is
4 ·Area(U ∩ S1 ∩ S2) = 2 ·Area(S1 ∩ S2). By periodicity, this probability is the
same as when the point v = (x, y) is chosen uniformly at random over all pairs
of real numbers (x, y) such that 0 ≤ x ≤ 2012 and 0 ≤ y ≤ 2012.

For i = 1 and 2, let Ai, Bi, Ci, and Di be the vertices of Si in counterclockwise
order, where A1 = (0.1, 0.7) and A2 = (1.1, 0.7). Then B2 = (0.3, 0.1) and D1 =
(0.7,−0.1). Let M = (0.7, 0.4) be the midpoint of A2B2 and N = (0.7, 0.7). Let
I ∈ A2B2 and J ∈ C1D1 be the points of intersection of the boundaries of S1 and
S2. Then S1 ∩S2 is the rectangle IB2JD1. Because D1,M, and N are collinear
and D1M = MA2 = 0.5, the right triangles A2NM and D1IM are congruent.
Hence ID1 = NA2 = 1.1 − 0.7 = 0.4 and IB2 = MB2 − MI = MB2 − MN =
0.5 − 0.3 = 0.2. Therefore Area (S1 ∩ S2) = Area(IB2JD1) = 0.2 · 0.4 = 0.08,
and thus the required probability is 0.16.

24. Answer (C):

Because y = ax is decreasing for 0 < a < 1 and y = xb is increasing on the
interval [0,∞) for b > 0, it follows that

1 > a2 = (0.2011)a1 > (0.201)a1 > (0.201)1 = a1,

a3 = (0.20101)a2 < (0.2011)a2 < (0.2011)a1 = a2,

and
a3 = (0.20101)a2 > (0.201)a2 > (0.201)1 = a1.

Therefore 1 > a2 > a3 > a1 > 0. More generally, it can be shown by induction
that

1 > b1 = a2 > b2 = a4 > · · · > b1005 = a2010
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> b1006 = a2011 > b1007 = a2009 > · · · > b2011 = a1 > 0.

Hence ak = bk if and only if 2(k − 1006) = 2011 − k, so k = 1341.

25. Answer (C): Because −1 ≤ 2{x} − 1 ≤ 1 it follows that 0 ≤ f(x) ≤ 1 for
all x ∈ R. Thus 0 ≤ nf(xf(x)) ≤ n, and therefore all real solutions x of the
required equation are in the interval [0, n]. Also f(x) is periodic with period 1,
f(x) = 1 − 2x if 0 ≤ x ≤ 1

2 , and f(x) = 2x − 1 if 1
2 ≤ x ≤ 1. Thus the graph of

y = f(x) for x ≥ 0 consists of line segments joining the points with coordinates
(k, 1), (k + 1

2 , 0), (k + 1, 1) for integers k ≥ 0 as shown.

Let a be an integer such that 0 ≤ a ≤ n− 1. Consider the interval [a, a + 1
2 ). If

x ∈ [a, a + 1
2 ), then f(x) = |2{x} − 1| = |2(x − a) − 1| = 1 + 2a − 2x and thus

g(x) := xf(x) = x(1 + 2a − 2x). Suppose a ≥ 1 and a ≤ x < y < a + 1
2 . Then

2x + 2y − 2a − 1 > 2a − 1 ≥ 1 and so (y − x)(2x + 2y − 2a − 1) > 0, which is
equivalent to g(x) = x(1 + 2a − 2x) > y(1 + 2a − 2y) = g(y). Thus g is strictly
decreasing on [a, a + 1

2 ) and so it maps [a, a + 1
2 ) bijectively to (0, a] . Thus the

graph of the function y = f(g(x)) on the interval [a, a + 1
2 ) oscillates from 1 to

0 as many times as the graph of the function y = f(x) on the interval (0, a]. It
follows that the line with equation y = x

n intersects the graph of y = f(g(x)) on
the interval [a, a + 1

2 ) exactly 2a times.

If a = 0 and x ∈ [a, a + 1
2 ), then g(x) = x(1 − 2x) satisfies 0 ≤ g(x) ≤ 1

8 , so
f(g(x)) = 1−2g(x) = 4x2−2x+1. If x ∈ [0, 1

2 ) and n ≥ 1, then 0 ≤ x
n < 1

2n ≤ 1
2 .

Because 1
2 ≤ 1 − 2g(x) ≤ 1, it follows that the parabola y = f(g(x)) does not

intersect any of the lines with equation y = x
n on the interval [0, 1

2 ).

Similarly, if x ∈ [a+ 1
2 , a+1), then f(x) = |2{x}−1| = |2(x−a)−1| = 2x−2a−1

and g(x) := xf(x) = x(2x − 2a − 1). This time if a + 1
2 ≤ x < y < a + 1, then

2x + 2y − 2a + 1 ≥ 2a + 1 ≥ 1 and so (x − y)(2x + 2y − 2a + 1) < 0, which is
equivalent to g(x) < g(y). Thus g is strictly increasing on [a + 1

2 , a + 1) and so
it maps [a + 1

2 , a + 1) bijectively to [0, a + 1). Thus the graph of the function
y = f(g(x)) on the interval [a+ 1

2 , a+1) oscillates as many times as the graph of
y = f(x) on the interval [0, a + 1). It follows that the line with equation y = x

n
intersects the graph of y = f(g(x)) on the interval [a+ 1

2 , a+1) exactly 2(a+1)
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times. Therefore the total number of intersections of the line y = x
n and the

graph of y = f(g(x)) is equal to

n−1∑

a=0

(2a + 2(a + 1)) = 2
n−1∑

a=0

(2a + 1) = 2n2.

Finally the smallest n such that 2n2 ≥ 2012 is n = 32 because 2 · 312 = 1922
and 2 · 322 = 2048.

The problems and solutions in this contest were proposed by Bernardo Abrego, Betsy
Bennett, Steve Davis, Zuming Feng, Silvia Fernández, Sister Josanne Furey, Peter
Gilchrist, Jerrold Grossman, Leon LaSpina, Kevin Wang, David Wells, and LeRoy
Wenstrom.
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